Instruction Manual
for the
perSYMone FDC-1

Floppy-Disk Controller

15 June 1982

SYM—1 Users’™ Group
P. 0. Box 3t9

Chico, CA 95927

HWARRANTY

The FDC—1 is warranted to operate in the manner described in this manual
when properly assembled and installed on a SYM-1 Microcomputer and cor-
rectly interfaced (including proper option settings) to one or a pair of
Shugart S5A499 compatible 3 1/4" disk drive(s), or Shugart SA86¢ compat-—
ible 8" disk drive(s}.

Any parts or components found to be defective within ninety days from
date of delivery will be replaced at no charge, provided only that the
defective item is returned, if requested, at the user’s expense, and
that such defects were not induced by maltreatment by the user.

No other warranties, either express or implied, exist in connection with
this product, including its hardware, firmware, software, and/or docu-
mentation.

SERVICES

The Users’ Group is not prepared at this time to offer assembly,
testing, or repair services for the FDC—-1. 1If such help is required by
the user, the names/addresses/phone numbers of several 8YM users who
have offered to provide these services will be supplied.

COPYRIGHT NOTICE

All documentation provided with the FDC-1 is copyrighted, 1982, by the
SYM-1 Users”™ Group. It may be freely modified or reproduced by the
purchaser to meet his needs, provided only that potential sales of the
F =1 are not jeopardized thereby.

PREFACE

The FDC-1 represents the SYM Users” Group’s first venture into producing
a hardware product for the SYM-1. Because the FDC-1 was designed, ori-—
ginally, at 1least, for the SYM-1, and, in keeping with the fashion of
using the names of fruits, as originated by the designers of the Apple
11, the FDC-1 will henceforth be called, formally, the perSYMone FDC-1.

The original hardware design and the firmware in EPROM were developed by
others, and distribution rights were assigned to the Users” Group, along
with the tasks of completing the documentation and providing full pro-
duct and customer support.

Completing the documentation proved to be a bigger task than we had
anticipated (isn’t it always?), for reasons to be given below, and this
manual should, therefore, be considered as preliminary in nature. It is
formatted to be edge punched and placed in a loose leaf binder, so that
updates and corrections may easily be inserted, as these are made
available as part of the continuing product support.

The original material for this manual was provided as rough draft ha., d
copy, together with partial scurce code on an FDC~1 8" disk in System 65
format. Our evaluation system was confiqured only for S 1/4" drives.
but Joe Hobart was kind encugh to transcribe the 8" disk files to SYM
cassette for us and we were able to read the files with RAE, and convert
them to RAE format. Joe alsc included a hex dump of the object code in
his EPROM.

Joe’s object code differed from that in our system, and neither of the
object codes agreed with the source code, with major differences exist-—
ing. The source code provided was apparently an early version, with
"bugs"” which would have kept it from working properly, while the obiect
code supplied in our EPROM seemed to be free of prablems when used
extensively for over a month with a single-drive 5 1/4" system. [This
of rcourse does not guarantee freedom from problems with dual-drive
systems {(although we have begqun to test a dual drive system), or with 8"
systems {(although Joe reports none, either, with his 8" system).]

The rough draft manual described several features implemented in + =
original source code which were dropped from the final object code .o
make room for the patches required to eliminate the bugs, thus
necessitating far more editing and rewriting than expected. The
firmware also differed from the source code in arrangement and usage of
internal subroutines, as well as usage of System RAM, thus regquiring
additional hours of intensive, detailed study to ensure consistency
bhetween the manual and the firmoware. Hopefully, all discrepancies be-
tween the text in this manual and the actually implemented firmware have
been eliminated.

The "reverse engineering” involved in editing a wmultiple-file source
cade {(with one very large gap!) to match the object code turned out to
be too time consuming. It was decided, instead, to use Dessaintes?
Disassembler on the “production" EPROM to reconstruct a new, single—-
file, "source" code, using the original only as a guide in assigning
meaningful labels. The System 65 Assembler permits only six character
labels, which can be gquite cryptic; these were lengthened to up to ten
characters for greater ease in understanding.

FDC—1 MANUAL {(Revision &) Fage @ - 1

The reconstructed source code, with as many comments inserted as the
limited time available permitted, is provided as an appendix to this
manual. It is hoped that this source code, in conjunction with the 1791
spec sheet, also provided as an appendix, together with the descriptive
material in the body of this manual, will provide the user with a
sufficient understanding of the software requirements of the systam to
fully customize the system to his requirements. The user is encouraged
to make such modifications, and to share them with others through
SYM-PHYSIS.

Machine readable source code currently resides only on FODS 5 1/4%
disks, and could be made available, on special order, on cassette. By
early fall of 1982, however, we expect to have a 32Kk RAM SYM-1 system
capable of operating with either an 8" or a 35 1/4" FDC-1 dual-drive
system as well as with a dual-—-drive 5 1/4" FODS system. We can then
provide FDC—1 readable source code, on disk ({(either size), much more
fully commented. This system will have on—board RAM at $99@0-$9FFF in
place of the FDC-1’s on—hboard EPROM to permit testing and evaluation of
improved versions of SYMDOS. We will also relocate the FDRDC-1°s 1/0
registers into the $ACAP-$ACFF block to free the entire 2K block at
% @P-$F/FF for better uses.

We would like to extend our complements to the designers of the FDC-1,
for- a job well done, and to the +two programmers who generated the
original source code for the two separate portions of SYMDOS. Each
section was well commented, and, with a copy of the 1791 spec sheet in
one hand, the FDC-1 schematic in the other, and the rough draft manual
handy for easy reference, the source code was elegantly easy to follow.

FDC—-1 MANUAL (Revision &) Page & - 2

CONTENTS

Preface g -1
Chapter 1: Introduction i -1
Chapter 2: Installation 2 -1
Chapter 3: Operation I -1
Chapter 4; Hardware 4 -
Chapter 5: Software 3 -1
AFPPENDICES
Appendix Ar SYMDOS Commands A -1
Appendix B: SYMDOS Error Codes R -1
Appendix C: Jumper Options £ -1
Appendix D: FDC—1 Memary Map p -1
Appendix E: Disk File and Directory Structures E -1
Appendix F; Chip Functions F -1
Appendix G: Connector Pinouts G -1
Appendix H: Physical Specifications H-1
Appendix I: Control Port Definitions I -1
Appendix J: SYMDOS Source Code Listing Supplement 1
Appendix K: SY1791-82 Specifications Supplement 2
Appendix L: FDC-1 Schematic Supplement 3

FDC—1 MANUAL (Revision @) Page @

CHAFTER 1
INTRODUCTION

The FDC-1 is a self-contained floppy disk controller board which will
interface to the SYM-1, SYM-2Z, KIM-i, and AIM-45 wmicrocomputer boards.
One or two disk drives, either 5 1/4 or B8 inch, can be controlled by the
FDC-1 (5 1/4 inch drives will be referred to as 9§ inch drives in most
sections of this manual). The physical layout of the board allows fur—
ther expansion from the "E"connector.

The disk drive connections are configured such that a standard ribbon
cable (with standard connectors) is all that is necessary to interface
to any disk drive(s) using the industry standard "Shugart" bus. Chan—
ging between 5 dinch and B inch drives is accomplished by changing
jumpers J1-J3 (see Appendix C} and using the proper drive cable.

With the FDC-1 sitting in front of you with the name “FDC-1" reading
from left to right, the following areas can be noted:

The card edge fingers along the left side connect to the “E" connectur
on the 5YM-1, etc. Along the right edge of the FDL-1 is a continuation
of the "“E" connector which brings through a subset of the signals
available at SYM"s "E" connector (see Appendix G).

Along the bottom of the FDC-1 are two dicsk drive connectors marked P3
for 3 inch drives, and P4 for 8 inch drives.

In the uwupper right hand corner are two turret pins marked Ti1 and TZ.
These pins are used to connect an external power supply to the FDC-1 and
also to provide power to the extension of the "E" connector. T1 is the
ground pin and T2 is the +5 volt pin.

The software provided in EPROM on the FDC-1 is a combination of commands
and routines called SYMDOS. It is designed to provide the functional
link between SYM and one or two floppy disk drives.

The software is linked to the SYM monitor (SUPERMOM} in a manner which
allows user extensions to the routines or user substitutions for varir s
routines and default parameters. It permits execution of most built-.n
functions either from the hex keypad or from an external terminal.

The software described in the following sections allows formatting disks
and saving and loading files from SUPERMON, In addition, the disk
directory can be listed to a display terminal from the monitor.

It provides for ENtering, LOading {(with Append), and ASsembling (with
LT to disk) with the Resident Assembler/Editor (RAE-1) and loading and
saving programs from BASIC (BAS~1}.

This is a relatively primitive DOS, and the user may wish to axtend its
capabilities using the extension facilities provided. It is, however,
this very basic structure which allows SYMDOS to operate in as small as
1K-byte system with no terminal, if soc desired!

The disk is treated as one long file record split intoc 1linear segments
end—to-end, and deleted files do not free their sectors for reuse. 1§ a
disk is full, but with a large residue of deleted files, the dead space
may be recovered by loading active files from the full disk and saving

FDC—-1 MANUAL (Revision &) FPage 1 - 1

them to an empty disk, one at a time, and then reformatting the old disk
to clear its directory.

Alternatively, utility programs can bhe developed which will copy only
active files from ane drive to another, or if only a single drive is
available, to prompt the user whern the old or new disk is to be
inserted, and wait for his/her signal before doing the appropriate loads
and/or saves.

Another approach for the single drive user is the use of a packing, or
compacting, utility, which physically moves the active files down to the
space freed by the inactive +files, but this is a relatively slow
procedure, and should not be used unless back—up copies of all active
files are available on other disks, in the event of a catastrophic
failure during the packing process!

It is expected that a large number of such utility programs will very
guickly be developed by FDC-1 users, and made available to the rest of
the FDC~-1 user community through SYM—PHYSIS. The availability of such
routines is all that is lacking for SYMDOS te become a full-fledged DOS.

FDC—1 MANUAL (Revision @) Page 1 - 2

CHAFPTER 2

INSTALLATION

2.1 Interfacing to the S5YM-1, KIM—1 and AIM-4&5

The FDC—~1 connects to the SYM-1 through the "E" connector located at the

top right edge of the SYM-1 bopard. This connector matches the connector
marked "P1" on the FDC-1.

Several methods of installing the FDC-1 are available. A pair of
dual-22 pin connectors is provided with the board. These may be
soldered back—to-back to serve as a male-to—female adapter, or one of
them may be soldered "backwards" to the FDC-1i edge fingers.

The FDC-1 now will connect directly to the SYM-1 "E" connector or to
similar connectors on the AIM-65 or KIM-1 microcomputers, Devices which
may have previously connected to the "E" connector may now be connec’ ~d
to the extension expansion connector, P2, on the FDC-1. Alternative.,,
you may elect to adopt some sort of motherboard approach.

2.2 Intertacing to the SYM-2

The SYM-2 has the same general connector format as the SYM-1 except that
instead of card edge fingers, pads are provided for a right angle female
dual 22-pin solder—-tail connector. {This connector may be obtained as
part of the PEX-2 Port Expansion Kit for the SYM-2.) The FDC-1 simply
plugs intc this connector, once it is installed in the SYM-2. Further
expansion is again available by use of connector P2 on the FDC-1.

2.3 Connecting power

The only veltage which the FDC—-1 requires is +5 volts which must be
supplied separately to the turret pins on the FDC-1. This wvoltage is
connected by soldering wires to the turret connections. T1 is gro-nd
{common to the 5YM, FDC-1 and P2) and TZ is +5 wvolts (FDC-1 and 2
only). A 200 microfarad capacitor is provided across these terminals to

provide filtering. Also, decoupling capacitors are spread around the
FDC-1 to eliminate switching noise.

Power for the FDC-1 may be brought from the SYM-1i via external wiring
but the SYM-2 power supply will not handle the extra load. Also, power
required by any additional devices connected to FDC-i1 expansion
connector P2 must be allowed for in determining power requirements.

The user must supply all necessary voltages for the disk drives
externally to the FDLC-1.

2.4 Connecting a 9 1/4 inch drive

The FDC—1 connects to the control connector (drive select, step,
direction, etc.) of the 5 inch disk drive through a 34 connector +flat
cable. This cable connects to the FDC-1 using a socket type connector
(3M 3414 or equivalent) which plugs into the header strip provided at
PX. Pin 2 of this connector is marked on the bpard. The appropriate

FDC-1 MANUAL f(Revision &) FPage 2 - 1

jumpers on the FDC-1 must be configured for 5 inch drive systems,

2.9 Connecting an B inch drive

The FDE-1 connects to the control connector (drive select, step, direc-
tion, etc.) of the 8 inch disk drive through a 5% conductor flat cable.
This cable connects to the FDC-1 using a socket type connector (3M 3425
or equivalent) which plugs into the header strip provided at P4. Pin 2
of this connector is also marked on the board. The appropriate jum—
pers on the FDE-1 must be configured for 8 inch drive systems.

FDC-1 MANUAL (Revision @) Page 2 - 2

CHAPTER =
OPERATION

The following sections describe in detail how to use SYMDOS with either
SYM-1 or SYM-Z. It is assumed that the FDC-1 has been correctly in-—
stalled according to the instructions given in Chapter 2, Installation.

In all cases, the use of SYMDOS involves two steps: First, a program
must be called to link SYMDOS to either SUPERMON, BAS-1, or RAE-1.
Second, the desired function is then called, using the new commands
provided by SYMDOS.

3.1 Using SYMDUS with SUPERMON

SYMDOS may be used with SUPERMON either through a terminal or directly
from the hex keypad. This first section will describe its use with a
terminal.

After reset and logging on to the terminal, the user must 1link SYMDOS ta
SUPERMON (it is assumed that the user is familiar with the vario.
features and commands of SUPERMON as described in the SYM—1 Reference
Manual). This is done with the SYM 6§ (G0) command, as follows:

.G 9884 <cr>

Following the execution of this short program, you now have four new
SUFPERMON commands available to you. These are:

.59 For formatting a disk

.8% Ffor saving to disk

L3 Ffor leoading from disk

L7 for listing a disk directory

3.1.1 Formatting a disk

Whenever a new disk is used with SYMDOS, it must be formatted.
Formatting may also be performed, after a “temporary"” exit from either
BAS—-1, or RAE-1, if it is discovered, after entering a long program,
that no disk space is available on an already formatted disk and that
other formatted disks are available!

To format a disk, enter the comand

-89 n,d,sl <cr>

where:
n is the drive number, & or 1
d is @ for single density, 1 for single density
51 is sector length
with:
¢ for 128 bytes/sector
1 for 25& " "
2 for 512 » "
3 for 1924 " "

As with other SUPERMON commands, the perind and space are provided by
the monitor. Either a comma ¢,)}) or a dash {(-) may be used as the
delimiter between parameters.

FDC-1 MANUAL. (Revision &) Page 3 - 1

Some examples of this command are:

.59 #,8,8 <cr> Format drive @, single density,
128 bytes per sector

59 1,1.,2 <er> Format drive 1, double density,
(5" drives only}, 512 bytes per sector

.59 @ {cr>» Format drive 8, single density,
128 bytes per sector.

Naotice that, in the last command, only a single parameter was entered——
the drive number. In this case, default values are used to format in
single density, 128 bytes per sector. In all cases, the drive number
must be specified.

In the case of disks used in double sided drives, both sides of the disk
will be formatted automatically.

As an aid in selecting sector length for formatting, refer to Table 3.1.
Since data are stored on disks in whole sectors only, pick a sector
1. gth that will allow for minimum wasted sectur space wherever

possible. You may wish to format several disks, each with different
sector lengths, just for this purpose.

For limitations on sector length, see Appendix D, FDC-1 Memory Map.

TABLE 3-1: SECTORS PER TRACK VS SECTOR LENGTH

FORMAT SECTOR LENGTH
128 256 512 1924
5" 8Single Density 18 14 5 2
5" Double Density 39 18 9 S
8" Single Density 26 i3 8 4

3.1.2 Saving to disk
The format for saving data to disk is

.83 <cr>
filename,u,sa,ea <cr>

where:

filename is a name composed of one to ten characters
(see Table 3-2 for list of acceptable characters)

uis drive "unit® number (see Table 3-3)

sa is starting address of data to save, in hex

ea is ending address of data, in hex

Note that the save command takes two lines to enter the required
information and that a <cr’> must be entered after each line.

Since only whole sectors are stored and loaded on the disk, data beyond
the ending address may be stored. This =ame "extra" data will be
transfered to memory on subsequent loads.

FDC—1 MANUAL (Revision &) Page 3 - 2

Examples of the save command:

Save data in memory locations 288-FFF onto disk in drive @.

Give file the name “FILE1.HEX":

-53 {cr>

FILEL.HEX,@,280, FFF <cr>

Save data in memory locations 1600-1225 onto disk in drive 1.

Bive file the name "NEWFILE"” (note that additional locations will be
saved to fill up a complete sector):

83 <{cr>

NEWFILE-1-1866-1225 <cr>

P

Save data in memory locations E@F~-FOC onto side 2 of disk in drive 1.

Give file the name "#1BUFFER":

- 53 {cr>

#1BUFFER, 2, EA98, FBC <cr>

Save data in memory locations C@@-EFC onto side 1 of disk in drive @.
Do a read verify after writing to check integrity of data saved. Give

file the name “YBACKUP.X":

.83 <cr>

“BACKUF. X, 4,CO8 . EFC <cr>

TABLE 3—-2: ALLOWABLE CHARACTERS IN SYMDOS FILENAMES

#»-ﬁlw >
NN

~ RN W

~ "+

Wy A

Do not use the following characters in a filename:

hyphen ar dash (-}

comma ¢,)
quote ("}

embedded spaces

Acceptable filenames:

NEW.FILE
SEXEC. MON
TOP >=BOT
12349 (4)

Unacceptable filenames:

A NEW ONE
LAST-4
"THIS"TIME
FILES1, 2
LATEST.BAGIC

FDC—1 MANUAL (Revision &)

(contains
(contains
{contains
{contains
{cantains

embedded spaces)

a hyphen)

quotes)

comma)

more than 1@ characters)

Page 3 - 3

TABLE 3-3: DISK DRIVE UNIT ASSIGNMENTS

UNIT NUMBER ASSIGNMENT
B Drive @, Side 1 Read or Write
1 Drive 1, Side 1 Read or Write
2 Drive @, Side 2 Read or Write
3 Drive 1, Side 2 Read or Write
4 Drive @, Side I Read Verify after Write
S Drive 1, Side 1 Read Verify after Write
& Drive @, Side 2 Read Verify after Write
7 Drive 1, Side 2 Read Verify after Write
3.1.3 Loading from disk
There are two formats for loading from disk. The Ffirst is the most

usual and loads a saved file into the same memory locations from which
it was originally saved:

A3 fer’
filename,u <cr

where filename and u are as defined for the save command.

Note that the load command requires two lines, Jjust as did the save
command.

The Ffilename must match identically the filename used when saving the
file or a “"file not found" error will be reported.

The second format for the load command allows loading the saved file
into a different location that that from which it was saved (no address
adjustments are made-—the code is simply loaded intact into the new
locations). The format is:

13 <er>
filename,u,sa <cr>

where sa is the new starting address for the data.
Examples of the load command:
Lpad data from previously saved file on disk in drive &:

L3 <cr>
FILE1.HEX, ¥ <cr>

toad data from previously saved file on disk in drive 1, loading data
into new memory locations 2888-2225:

X <cr>
NEWFILE, 1,2000 <{cr>

3.1.4 Listing a disk directory
As data is stored to the disk, SYMDOS automatically builds a directory

FDC—-1 MANUAL (Revision 8) Page 3 - 4

with filenames, starting and ending memory locations from where the file
was saved, and the track and sector where the file was placed on the
disk. The format to list the information from the directory is:

L7 u <cr>

where u is the drive unit number as previously defined in section 3.1.3.
The response to this command will be a listing of all directory entries
(all files saved), including those files which have been deleted by
later saving another file with the identical filename as an earlier
file. Only the latest copy of any +File with a duplicate name is
normally available toc the user {(see Appendix E for further information
on disk format and directories).

A typical directory entry will look like:

filename —bbbb-eeee—ttss

where filename is as previously defined,bbbb is the beginning address in
memory, eeee 1is the ending address in memory, tt is the starting track
nuaber on disk, and ss is the starting sector number on disk.
3.1.5% Operation from the SYM hex keypad
The operations in the previous faour sections (formatting, saving,
loading and listing a directory} can all be performed directly from the
8YM hex keypad without the need for an ASCII terminal connected to the
8YM. Only the first three operations have real meaning since a terminal
is needed to view the directory listing. To simplify the entry of
parameters with the keypad, it is suggested that filenames be restricted
to combinations of hexidecimal characters (&-F).
After RESET and

.5 9086 <cr>
enter the following, using the hex keypad:
To format:

«SHIFT USR1 u-d-sl <cr>

where u,d and sl are as previously defined in section 3.1.1.
To save:

-SHIFT ASCII 1 F <cr>»
filename—-u-sa—ea <cr>

where filename, u, sa, and ea are as defined in section 3.1.2.
To load:

“SHIFT USRS <cr >
filename—~u—-sa <cr>

where filename, u, and msa are as defined in section 3.1.3.
I1f a display is connected, a directory may be listed.

FDC—-1 MANUAL (Revision &) Page 3 -]

To list the directory:

«8SHIFT USR4 u <cr>
3.2 Using SYMDOS with BASIC (BAS-1)
SYMDOS is used with BAS—-1 in much the same manner as with SUPERMON.
After 1logging on to BAS-1 (with .J @ or .G CB8A), you must run a small
program that links S5YMDOS in with BAS-1:

X=USR(&"7d98" ,8) <cr»

Following the execution of this short program, you now have three new
SYMDOS functions available:

Saving a BASIC program

Loading a BASIC program

Exiting BASIC to SUPERMON
3.2.1 Saving a BASIC program

After SYMDOS is linked to BASIC, programs you have entered may be saved
on disk with the following command:

#5 filename,u
where filename is a name composed of one to ten characters taken from
Table 3-2, and u is the drive unit number taken from Table 3-3. Note

that BASIC enters the space after #5 and does an automatic <cr> after
the unit number.

Examples of the save command:

Save a program called PROG1 to side 1 of a disk in drive @:
#5 PROG1,0

Save a program called $ACCOUNTS to side 2 of a disk in drive 1:
#5 S$ACCOUNTS, 3

Save a program called BAS.PROG to side 1 of a disk in drive &, doing a
read verify after write:

#5 PAS.PROG,4
3.2.2 Loading a BASIC program

The following command is used to load a previously saved BASIC program
from disk:

#. filename,u
where filename and u are as defined before in Section 3.2.1. As wWith
the #5 command, the space after #L and the <cr> after the unit number

are entered automatically by BASIC.

Fxamples of the load command:

FDC—1 MANUAL {(Revision @) Page 3 - é

tpad a program called PROGL from side 1 of a disk in drive 8:
#_ PROGL,O

Load a program called $ACCOUNTS from side 2 of a disk in drive @:
#L SACCOUNTS, 2

3.2.3 Exiting BASIC to SUPERMON

A useful command, exit to SUPERMON, is provided in SYMDOS. The may be
used, for exampie, to exit to the monitor to list the disk directory.
You may return +to BASIC by entering a .G <cr>. The format for this
command is, simply, #M.

Notice it is not necessary to enter a <cr> after #1. You are now in the
monitor and will get the monitor prompt (a dot or period). SYMDOS will
remain linked to BASIC after entering .6 <cr> so further #L, #5S, and #M
commands will be properly accepted. SYMDOS is linked to the monitor

aftter a #M is used to enter the monitor.

3.3 Using SYMDOS with the Resident Assembler/Editor (RAE-1)

As with SUPERMON and BASIC, SYMDOS must Ffirst be linked with RAE-1
before use,. After entering RAE—1 from the monitor with .G BAEA {cr>
enter the following:

>RU #9803 <cr>

SYMDOS will now be linked to RAE-1 and you will have the following new
SYMDOS functions available to you:

ENtering source files to disk
[Oading source files from disk
LOading and Appending source files from disk
ASsemble multiple source files from disk
Z.3.1 ENtering source files to disk
The format for the command to ENter source files to disk is
*EN filename u <cr>
where filename is a name composed of one to ten characters taken from
Table 3-2 and u is the drive unit number taken from Table 3-3. As with
other RAE-1 commands, only the first twec characters of the command need
be used, if desired, and parameters are separated by spaces.
Examples of the ENter command:
ENter a file named RAEFILE to side 1 of a disk in drive @:
YEN RAEFILE & <cr>
ENter a file named FILEZ.RAE to side 2 of a disk in drive @:
*EN FILE2.RARE 2 <cr>
ENter a file named SOURCE.TXT to side I of a disk in drive 1 with read

FDC—1 MANUAL (Revision &) Fage 3 - 7

verify after write:
YEN SOURCE.TXT 5 <cr>

3.3.2 LOading source files from disk

The format to LOad source files previously entered to disk is
O filename u <cr’

where filename and u are as defined in Section 3.4.1.

The following optional Fformat will LOad a source file from disk and
Append the file to a source file already in memory:

>0 filename u A <cr>

As with other RAE-1 commands, the command wmay be shortened ta two
characters and the option may be shortened to one character, if desired.
When LDading source files, especially when using the Append aption, make
sure sufficient spource file space 1s available to contain the entire
file (refer to the GSEt command description in the RAE~-1 Reference
Manual).

Examples of the iflad command:
LDad a source file named RAEFILE from side @ of a disk in drive @:
.0 RAEFILE @ <cr>

L8ad a source file named FILEZ.RAE from side 2 of a digk in drive &, and
Append the file ta the source file already in memory:

A0 FILEZ.RAE 2 A <cr>
F.3.3 ASsembling multiple source files from disk

A= with cassette tape storage, SYMDOS allows RAE-1 source files to be
segmented and placed on disk as a sequence of files. This allows source
files to be assembled which would otherwise be too large to fit into the
memory space available.

The procedure for assembling multiple source files from disk is very
similar to that using cassette tape. The only difference is in the
format of the continue to tape (LC€T) pseuwdo-opcode. For continue to
disk, the pseudo-opcade should be:

-CT filename?Z u

where filename2 is the filename of the next segment to be LOaded and u
is the drive unit. Each source file except the last one must contain
the .CT pseudoc—opcode with the filename of the next segment and the
drive unit where the file is located. The last file segment simply ends
with the unual .EN pseudo-opcode.

To do an assembly, the first file segment is loaded into memory with the
.Oad command and the ASsemble command is entered. Alternatively, vyou
may enter

»1 CT filenamel u <cr>»

FDC-1 MANUAL <(Revision &) Page 3 - 8

>A8 <cr >

where filenamel is the name of the first source segment, and SYMDOS will

then LOad the first file segment amnd continue until pass one is
complete.

At the end of pass one, the message "READY FOR PASS 2" will appear. You
must then reload the first file segment by either using the LOad command
or by entering the .CT filenamel u pseudo—-opcode as above. In either
case, you next enter

P& <or>

to complete the assembly.

FDC—1 MANUAL (Revision &) FPage 3 - g

CHAFPTER 4

HARDWARE

Note: This brief discussion is intended only to cover the basic
information flow of the FDC-1, and not to explain its operation in any
great detail. For more detailed information refer to the FDC-1
Schematic, the S5Y1791-82 Specifications, and the SYMDOS Source Code
Listing provided as supplements to this manual.

Bd CoNYROL BUY ;T‘P:ﬁ
- ADpRES
o j S DATA RyS g
0 Y
: R 2> ¥FpC [cLock
o $YMDoS p~
: Ao " gg—‘?ﬂOM cmcm-rkm 2
S fem | ge| R Lo 2
N <
a - 1 5
: L L :
< i FLobhy DIGK - 5
5l w0 | mgg]|
1 VPoet ol ' n E
g A omnle -
§_E1,\f’__,i Q
o ¥ v ¥
F DiSK DRIVE INTERFACE | —
Plcm vewes | 8" peives a

The sketch above shows the major functional elements of the FDC~1. The
function of each of the elements is briefly described below (the
interface connectors Pl-P4 are not covered since their functicens should
be clear).

fAddress Decoder

This PROM generates the required chip selects for the three subsystems
on the FDC~1; the floppy disk controller chip, the output control port,
and the SYMDOS EPROM. Since these addresses are determined by PROM,
custom memory maps are possible with the FDC-1. A 256 % 4 PROM is
connected to AB-Al1D, and its outputs are used to generate the required
chip selects, resulting in a very versatile memory map. Note that the
minimum address space for any chip select signal is one whole memory
page.

FDC—1 MANUAL (Revicion &) Page 4 - 1

SYMDOS EPROM

This EPROM contains the firmware necessary to save and load between disk
and the SYM s SUPERMON, BASIC, and RAE. Both disk 1/0 and primitive
file bandling routines are included in this 4K »x @ EPROM. bBoth address
and data lines from the SYM are connmected to this EPROM, which 1is
located at hex addresses $7608 to $9FFF by the address map FROM.

Clock Eircuit

This circuit generates the necessary glock signals used by the FDC-1.
The data separator requires three clocks, while the +Floppy disk
controller chip requires +two clocks. These signals are all generated
and controlled by this circuit. A 1& MHz crystal is used as the source
from which these clocks are derived, and two lines from the control port
contral these various clocks.

Control Port
Various lines needed to control the subsystems on the FDC-1 are provided
by this circuit, which interfaces the SYM’s data bus to the necessary
latched control lines on the FDE-1. The actual location af this port on
the 5S5YM’= memory map is determined by the address decode PROM. As
shipped from the factory, this is located at hex address $F1XX, using
the entire page. This port is write onlvy.

Floppy Disk Controller

A single board floppy disk controller with the simplicity of the FDC-1
is made poesible only throuvgh the use of L51 technology to incorporate
the majority of the disk controller functions into a single chip. This
one chip controls most of the functions of the FDC-1 as well as the disk
drive{s). Commands such as Read Sector, Format and others are performed
by this chip with the firmware/CPU assisting in moving data around.
Thizs chip has four registers, and therefore requires twc address lines,
A and Al, and also the SYM’s data bus to function correctly.

The controller location is selected by the address decode PROM; this has
been assigned at the factory as hex address $F@XX (again, its four
registers are repeated every four bytes, to fill the entire page).

Data Separator

This circuit is better called a "Data Synchronizer', and its function is
to generate a clock which perfectly "frames" the incoming data stream so
that the FDC chip can reliably separate data pulses from clock pulses in

the incoming data stream. This circuit must also be able te accomodate
various data speeds resulting from the varicus disk size/density
combinations supported. The data separator acts on the incoming read

data from the disk, and generates the required "Read Clock" for the FDC.

Disk Drive Interface

This circuit is a hardware interface between the signals from the two
disk drives, which are typically "open collector", and the various "TTL"
ievel input, output, or control signals which the FDC-1"s control
circuit primarily uses. Open collector lines are used for their high
noise immunity, and long distance drive capability. This circuit con-—
nects ta the drives through connectors P3 and P4.

FDC—1 MANUAL {(Revision &) Fage 4 - 2

CHAPTER S

SOFTWARE

The purpose of this chapter is to provide background and supporting
information to supplement the highly condensed, but definitive infor—
mation contained in the source code listing of SYMDOS in Appendix J.

Z.1 User Controlliable Parameters

URENEW New unrecognized command vector. SYMDOS links into
URCVEC and allows user to establish his own command
link here instead of URCVEL. Defaults to %8171 (ERMSGE)
at SAL2E-EAL2F

DOSEXT Address for user extensions to SYMDOS commands
Defaults to #7359 (RSTXY) at $A&Z2C—-$ALZD

ucMbvC Unrecognized command vector for the DISKIO primitives
May be used to add more "primitives"
Defzults to $7DFD (BADCHMD) at $A&LBF—$AL1S
BADCMD returns $36 error code (invalid command)

WRKBUF S8YMDOS needs lots of RAM working space whose
location may be defined by the user. It consists
of 32 bytes for working variables and 96 bytes needed
for RAE-1 continue on disk name function, followed
by a RAM space used by the disk as a single sector
buffer. WARNING - this buffer will be fully utilized
by the disk routine! If the user formats disks
for 1824 bytes per sector, the disk routine will
fill 1624 locations during a read, beginning at the
location calculated as the start of the disk buffer.
Defaults to $PEBA, where workspace goes from $9ER9—
$GEFF, RAE buffer from $OEAP—SOEFF and the default
sector buffer from $HFPP—S$OFFF. At $ALZ2A-$ALZB

NOTRACKS Defaults to 35 (5") or 77 (8") at $A&14
STEPRT Defaults to 83 (S") or $82 (B") at %$A&611
See BY1791 Speciftications on step rate settings
RETRIES Defaults to 3 at $A617
FXBFLG Fixed block format flag — see saction 5.5

FDC—1 MANUAL {(Revision &) Page 3 - 1

2.2 Using the DISKIO primitives to examine or alter a directory entry

The DISKIO parameter control block is located at $ALABE-$ALES. The byte
contents are explained also in a separate section, however they are
repeated here for use in directory work. To examine a typical directory
entry, from the monitor, deposit, with .D A&888 <cr>, the Ffollowing
bytes:

ALYE o3 020 @2 507 oF 28

1 ! 1 1 1 EH

IFLAGS, turns off
disk after the read

Address $9Fgd, where the data is to
be read into (disk sector buffer
default?}

- Sector 2, first sector of directory

Track @, the first track (@ and 1) of the directory
Most significant bit must be set if to read second
side of a two sided disk

Unit number (& or 1)

To read the selected sector from the disk to memory put an #4 in the ac-
cumul ator from the monitor with:

R <cr>

P XXXX, <spacebar>
S XX, <spacebar’>
F XX, <spacebar>
A XX, @4 <cr>

Tren .68 988¢ <cr>. This will read the selected sector. I+ these are
1. 4 byte sectors, the data will be read intc $OF@@-$0F7F; if 256 bvte
sectors, into $OF99-$PFFF, etc. Only complete sectors are read.

To write a =elected sector, follow the same instructions, but use an @5
instead of #4 in the accumulator.

Aftter reading the data, examine the memory area into which the data was
read. Use the Verify function or equivalent. Twoc typical entries would
appear as follows (these would be the only entries in a freshly
farmatted disk):

OFgg C1 42 A3 44 26 20 26 20
gFrgg 2¢ 28 @2 @6 03 FF 82 4
BF16 41 42 43 A4 2¢ 20 2¢ 20
gri8 2¢ 2¢ 92 08 @63 FF @82 @5
gFzZeg a8 7? 77 PP 7?7 7P PP 727
aFz28 727 7?7 7?7 27 7?7 @2 @9

First look at $6F1€-$€F19%. This represents the ABCII for file name ABCD
with 6 trailing blanks to fill our 1@ characters (the user does not need
to enter the blanks). Locations $8F1A, $8F1IB contain @208, the hex

FDC—1 MANUAL <(Revision &) Page 9 - 2

start address for the file. If no relocation is requested, this will be
the true start address. Locations $8F1C, $0F1D contain $3FF, the ending
address from which the file was originally stored. The last two bytes
of the 14 byte directory entry show the track and sector where the file

starts. This file starts at track @2 sector #5 and uses the following
full sectors:

a2 #3 (128 bytes)
a2 86 (128 bytes)
g2 87 (128 bytes)
A2 @8 (128 bytes)

for a total of 512 bytes ($8208-$63FF).

Mow look at locations $@F@G-$8F1F. These contain a directory entry for
file ABCD also. But this one is a down—-level "old" copy of ABCD which
got "deleted” when you stored the second one. Now, if you say:

L3 <cr>
ABCD @ <cr>

SYMDOS will load only the second one because the ASCI1 characters all
match exactly.

This directory resulted from the following sequence:
59 @ <cr>

83 <cr>
ABCD @-200-3FF <cr>

83 <cr>»
ABCD #-280-3FF <cr>

As SYMDOS tried to 1locate a place to store the second file in the
directory, it encountered an old copy of the file name before it found
an open entry. Therefore it "smudged" the old copy by setting the MSB
of the first letter of the old name. Then it found an open entry (first
spot where first character of file name = J9) and stored the file
starting with the track and sector data it found in that open entry {« 3
$OF20-%0F2F for a typical directory ending entry).

To reaccess a file accidently deleted (preferably to rename the deleted
entry) you need only:

1. Read the directory tracks

2. Change the entries to suit your purpose
3. Rewrite that directory entry to the disk

2.3 The Read Routine

a}) The name for directory search is loaded into NAMBUF+2 through +9.

b) The directory search is started. If the name is not found, this is
reported. If found, directory entry for start and end of file are moved
from directory into NAMBUF+16 through +13.

¢} If the file is to be reliocated, the relocation address replaces the

FDC-1 MANUAL ({(Revision @) Page 5 - 3

original address and a new file extent is calculated to match the ori-
ginal file extent.

NOTE: BASIC files are not relocatable. They are always loaded into the

same space they originally occupied. 0Only SUPERMON and RAE files can be
relocated.

d) DPirectory data indicating sector and track are maved into NAMBUF+14
and +15 and used there to contral the seek to the first sector of the
data.

e) Subsequent seeks and reads are done on seguential sectors to the end
of a track, continuing or to the first sector of the next sequential
track until the entire file has been loaded.

2.4 The Write Routine

a) The directory is searched to see if this file name is already present
on the disk. If vyes, the old entry is deleted by setting the most
s nificant bit of the first letter of the name on the old entry. This

pe.t of the directory is rewritten and the directory search is con-—
tinued.

b} When search hits the first directory entry having a @@ as the first
byte of the name, it examines the last two bytes of that first & entry
+o aobtain the starting track and sector for the new file storage. This
saves rcalculation time involved in search for last used entry, file
start and file extent.

c} File storage is done on an incremental sector by sector basis until
the entire file is stored. Maximum file size is 32K if single density
is used, 64K if double density is used. The memory area where the data
is stored is taken as the source buffer for the drive data transfer. Iif
read/verify is enabled (a readback after every write to assure data
integrity on the disk), readback data enters the disk buffer one sector
at a time as it is written. No validity check is made, the DISKIO
routine will report only whether successful readback occurs.

d4* If a readback error occurs part way through the file transfer to the
d_ .k, the directory entry for that partial file will not be the name
requested originally. Instead it will be entered as "BAD?SEGMNT" with
the file start address in that entry the same as the original file start
and the file end address reflecting the total number of sectors occupied
by this "bad file”", up to and including the sector on which the error
occurred. As the error is sensed, in addition to marking this disk
segment bad, the following directory entry (a 2@ byte in first letter)
is marked in its last two bytes with the track number and sectaor number
of the next usable secter. The error is reported and the file store
attempt is aborted, returning to the calling routine.

e) I+ a File store attempt is successful, the directory entry for that
attempt is made normally and the directory entry immediately following
it is rewritten to show the next available track and sector as explained
in d} above. The DOS returns control to the calling program.

2.9 Fixed Block Format Data Storage

The normal method of storing new copies of old files is to delete the
old entry in the directory but not to reuse the data sectors (again, a

FDC~1 MANUAL {(Revision &) Page 5 - 4

reminder that this is a very basic DOS). Thus, 1if a user stores
multiple updates of a single file name on the disk, the data area will
fill up with numerous useless files. The user would then have to run a

copy file or duplicate disk utility to "compact” only current files onto
a naw disk.

A typical example might look like this:

FIRST SECOND THIRD CURRENT
/FILE1 /FILEL /FILEL FILEY
1 1 i i] t
TRK2 TRKS TRKE TRK11 TRK14
SEC1 SEC2 SEC3 SEC4 SECS

This example shows four copies of the same file (mach slightly modified
as compared to the previous). Each earlier entry with the same name has
been "smudged" or deleted from current acceses, but the data areas are
not reused. Notice that all four use 3 tracks + 1 sector.

I+ the user were certain that the new copy with the same file name would
occupy the same number of (or fewer) sectors than the original, it would

fill up the disk far less if the new copy could reuse (over-write) the
old copvy.

The user can cause this overwrite by storing any nonzero number in
location $A&24 (FXBFLG) while DOS is active. All files of the same name
will then reuse the old file's storage area.

The user accepts the responsibility to see that the new file size
occupies the same number or fewer sectors than the original.

>>>NOTE: NO ERROR CHECKING IS PERFORMED FOR THIS OPERATION:<<<

This +facility is typically most useful for a language such as FORTH,
where 1624 byte blocks are always loaded. Thus a single disk may be
formatted as a set of files titled SCREEN1, SCREENZ, SCREEN3, etc. Then
if FXBFLG ($A624) is nonzero, the same “screen” is always stored in the
same place on the disk each time it is updated.

2.6 Subroutine Description

Following is a partial listing of the major routines and subroutines in
SYMDOS, each with a brief summary of its function(s). To make this
listing even more useful, the column headed "REGS" should contain an
indication of the registers modified by the routine, and of the
registers used to pass parameters to and from each routine.

It is hoped that a revised version of this table will become available,

including not only the register information, but a more complete
listing, in the very near {future.

FDC-1 MANUAL (Revision &) Page S - 5

NAME

BASENTRY

RAEENTRY

MONENTRY

LOADIT

USET

DRINIT

DIRSRCH

MORTRKS

SECSRCH

ADDS

FEOS

Ga3

FEDL

FEIE

FEBF

@8

FBES

?9ES

4 o]

DECREMENT 9133

FDC—-1 MANUAL

REGE

SYMDOS SUBROUTINES

FUNCTION

(Revision #)

BASIC entry to SYMDOS
RAE entry to SYMDOS

Cold entry to S5YMDOS. Sets up monitor link
Destroys jump vector table from $AL25-%AK2ZF
Leaves system RAM unprotected.

Iinitializes new input and ocutput vectors to
allow hex keypad to be used with FDC-1.

SYMDOS uses entire SCOPE BUFFER ($A40FG—$AL1F)

Uses parameters entered with L3 to search
the directory and load the file, with or
without relocation

Splits a value in A callied “"UNIT" into
drive (#,1), side (#,1) and read verify
after write (#,1)

Bit 2 - Read verify if 1
Bit 1 - Side select
Bit @ — Drive select

Presets directory parameters to start
search at track @ sector 2

Searches all tracks of directory on
selected drive and side for exact match
to the name in the first ten locations of
NAMBUF (WORKSP to WRKSP+2)

@3 in A if it found entry, carry = @
8% in A if it found end of directory
without finding selected file

Variables DIRTRK and DIRSEC in

WORKSF will contain track and sector in
which the selected entry is located
Variables DRNTRY and DRNTRY+1 in

WORKESP will contain LG, HI address in disk
buffer of the first character of the name
(saved for later update)

Subentry of DRSCH. Allows DOS to continue
search where it left off if it stopped to
delete a file during a new store of the
same filename

Searches directory whether 128, 256, 512,
or 1624 bytes per sector —— divides sector
length by 14 and searches that number of
entries for a name match

Decrements directory counter for number of

Page 5 -

&

CMPSURB

ASCLP

NMBLANK

DSKFPTR

FIXPTR

ASCPTR

PTNTRY

ADJCNT

BMPNTR

DIFFP2Z2TOP3

SECCNT

INTPRM

GETDTA

DOLOAD

FDC~1 MANUAL

14E

9163

9199

P1AS

?1B4

?1C4

LD

109

P1FS

F258

1FD

26E

P21F

9235

(Revision &)

entries in a sector examined

Compares two ASCII strings, one

pointed to by address in FC, FD; the other
in FE, FF. X contains number af characters
compared. Flags show results.

2 =1 if compare is 0Ok

Inputs an ASCII string from the currently
active input device and places it character
by character into the CRT buffer. Carriage
return also enters the buffer and terminates
the string. Delete ($7F) causes display of

a backslash on the terminal and a backspace
in the buffer. Backspacing to the left of
the first character causes exit with nothing
in the ASCII buffer except a $60D in the first
position

Flaces blanks into the first ten positions
of NAMBUF

Sets up FE, FF as L0, HI addresses of the
single sector buffer. Set up as WORKSP+128

Calls DSKPTR, sets DISKIO IADDR to sector
buffer address

Sets FA, FB as L0, HlI address of CRT buffer

Restores last directory entry as the pointer
into sector buffer for update

Divides directory count by 1& to
get how many times 128 must be added to
determine next load or save address

Uses ADJCNT in adding correct number
to P3 which is the address counter
during load and save operations

Compares £3 to P2
to see if load or save complete

Calculates how many directory entries in
a sector based on disk parameters in DISKIO
section

Moves DATA, TRACK, SECTOR variables
from workspaceto DISKIO parameters

Communicates with the user. Accepts an ASCII
line, then interprets it. First parameter is
name, up to 19 characters max. Then at least
one blank space. Then up to 3 parameters in
normal monitor input format {(all hex) sepa-
rated by hyphens or commas

loads the file using previously defined
parameters and directory entries. Start

Page 3 - 7

STOPTR

MOVEADDRS

DOSTORE

MOVPARMS

WRTNAM

SMUDGE

NXNTRY

READVERIFY

DIRPARMS

BMPDIR

DTAPNT

DISKPARMS

FORMAT

FDC—1 MANUAL

?25E

26A

PI2F

F36H

F346D

7381

238D

P3P

93D8

PoET7

93EC

EI3

944E

{Revision &)

address in Pl. End address in P2. Moving
caounter from Pl to P2 in P3 bumped as each
sector is loaded or saved

Saves directory pointer for update later
if file is successfully stored else points
to entry where "BAD.SEGMNT" will be entered

Moves address data into Pl, P2, P3 for load
data. If relocation requested, recalculates
and replaces directory address info with
relpocation data. No change made to directory
on disk if relaocation is requested

Directs the file store funtion. Uses
parameters entered with S3 command

to search directory for open entry, delete
old copies of the same name, store the file,
then update the directory

Moves address Pl, P2 into directory

Maoves 1# characters from name buffer into
correct directory entry in disk buffer after
a successful store

Saets most significant bit pf current
directory entry. Has the effect of deleting
that name

Adds 16 to Buffer Pointer (each directory
entry is 146 bytes)

Does the read verify. Write comes out
of actual memory area being stored. Read
verify data goes only intc sector buffer.
Original data in memory from file being
stored is not hurt if read verify is used

HMoves directory track and sector
data to DISKIO parameters (saved from
earlier DIRSRCH)

Points to next entry toc compare during
search. Bumps sector then track until
whole directory examined until first empty
entry

Ending routine of 83. Updates directory,
stores available track and sector in
first open directory entry

Sets up system defaults if disk present in
drive, else returns

Translates from user entered 128, 256,

etc., to DISKIO required @,2 etc. for sector
size. Disk formatter: User parameters
entered are unit, density, bytes/sector.

Page S - 8

DOWRITE F4E?
DOREAD 58
BMPDD D7
SAVEXY 9329
DEL IMITERS 9544
RSTXY 9559
NEWINFPUT o563
BMPDIR F3E7
SETUPRAE 26BA
SETPARMS FEF2

FDE-1 MANUAL

(Revision &)

Unit = & or | {(required entry)
Density = @ Single
1 Double {default)
Bytes/sector = 128
256 {(default)
S12
1924

Writes to disk using present parameters
Reads from disk using present parameters
Increments sector pointer for data or
directory work. 1If sector exceeds max
resets to 1 and increments track pointer.
If track exceeds max, sets carry return

Saves X and Y for later return to BASIC

Tests for delimiters, blank,
comma, or hyphen. 2Z =

double guote,
1 if delimiter in &

Restores X and Y for BASIC return

New input character routine for BASIC only.
Tests for #L, #5 for DOS load or save. If

no #, then returns normally. Else stays in
DOS until command is done, gives BASIC a <cr>»

Increments directory entry pointer to
search next entry

Presets parameters for a RAE load or save

Maove parameters of disk into current
parameter block. User may have changed disks
betweeen jobs. Reads the current density,
sector length, etc., and sets parameters to
match

Page 5 - ?

APPENDIX A — SYMDOS COMMANDS

In all the following commands it is assumed that a carriage return is
entered after each line in the command except for the "#" type commands
in BASIC:

COMMAND TABLE

FUNCTIDON SUPERMON BASIC RAE

tink to SYMDOS .6 P804 X=USR (" 9dea" , J) XRun 9863

Format a disk =59 u,d,sl

Save to disk .83 #5 filename,u *ENter filename u

filename,u,sa,sa

Load from disk -L3 #L filename,u >.0ad filename u
filename,u

Load and relocate .13
filename,u,sa

lLoad and append »>LBad filename .
Continue to disk >t .CT filename u
Exit to monitor #M >BReak or C

List directory L7 u

PARAMETER DEF INITIONS

filename is a name composed of one to ten characters taken
from Table 3—1

u is the drive unit number taken from Table 3-7
d is & for single density, 1 for double density
£l is sector length

& for 128 bytes/sector

1 for 256 " "
2 for 3512 " "
I for 1624 " "

sa 15 starting address of file in memory
ea is ending address of file in memory

nis a line number

FDC—1 MANUAL (Revision #) Page A - |

APPENDIX B — SYMDOS ERROR CODES

Error Code Probable Meaning
31 Not available (drive or formatted disk)
32 Invalid drive number
33 Invalid side number
34 Invalid track number
35 Invalid sector number
36 invalid command code
7 Read/write timeout
38 Seek timeout
3% Record not found
3A Seek error
3B Write protect
3C FDC chip busy
3D Lost data
3E CRC error
3F Not ready
49 Dencsity select error
oa Syntax error
S1 Directory full
32 Disk full
53 Mame not found
54 Buffer input error

FDC—1 MANUAL {(Revision &) Page B -

APPENDIX C - JUMPER OPTIONS

The FDC-1 has five jumper options which control three different
functions. Jumpers may consist of sockets and jumper pins or of circuit
etch and jumper pads. For the socket/jumper pin, simply remove the pin
and position it in the desired socket contacts. Faor the etch/jumper
pads, circuit trace must be cut from the center pad to the outer pad,
and a jumper wire installed and soldered into the desired pad holes.
Any trace which must be cut will always be on the bottom side pf the
board. Jumper wires may be sclidered on the top or bottom of the bpard
as desired.

The general philosophy followed with jumpers is that the option is
enabled by cutting the trace between the center pad of a jumper and one

of the outside pads, and soldering in a jumper from the center pad to
the other pad.

Example:
As Shipped Option Enabled
(Standard)
0_-——_—0 0O - ———Gs===z=ﬁ
Trace on battom JX Trace cut-’/f JX
of board on bottom

Jumper added to
top of board

Editor’s note: The above material is intended for a "factory” assem—

bled version of the FDC-1. In the kit version all options are selected
by remavabie jumpers,

The following figure explains the significance of each of the jumpers:

JUMPER DESCRIPTION STANDARD OPTION COMMENTS
Jl Configures a Std is for 5"
"Ready” input Opt is forr 8"
to function
correctly
0
b} 92
J2 Connects the o Same as above

proper clock
{1 or 2 MHz)
for FDC chip

wa__
e kP

FDC—-1 MANUAL. {Revision @) Page C - 1

J3 Sets up data
separator cont-
rol inputs
correctly

Same as above
Note two jumpers

o QP
oA

Std is for 1791

Opt is for 6591
Note two jumpers
Also, 46091 requires
special firmware

2 and 4 of FDC

J4 Configures pins D
for 1791 or 4591

o
o Q_p QP ©

)

16 32 16 32
ke Configures Ul for G Q_90 Q_p 0O Std is for 2732
27146 or 2732 Opt is for 2716

FDC—1 MANUAL (Revision &) Page C

APPENDIX D — FDC-i MEMORY MAP

SYMDDS is contained in an EPROM located at addresses $9896—$9FFF, In
addition, locations are used in pages 98¢, @i, F@, Fi, and in system RAM.

Also, default values are set to use $9EGF~$PEFF and one or more blocks
from S$&FAF to $1Z2FF for sector buffers. For a 4k SYM-1, sector length
must be limited to 256 bytes if the standard defaults are used. For
larger sector length, or for different RAM configurations, the sector
buffers may be moved by changing $R&62A-%A&2R in system RAM to hold a 128
byte workspace plus the maximum desired sector length (in multiples of
128 bytes).

Details on pages @8 and @1 usage, and on the use of system RAM, are
given in the detailed source code listing provided as a supplement to
this manual.

The figure on the following page shows how the four FDC-1 registers and
the one control port are echoed throughout the two pages from $Faa@-
$F1FF, due to the partial decoding technique used. This is similar in
intent to the I/0 decoding technique employed on the SYM itself, in that
in a 4K system there is memory space to waste.

For those who resent this waste of valuable memory space and who wish to
add even more than 32K RAM to SYM, say an added 4K at %9969, the follow-
ing suggestion is offered:

Since full source code is provided, SYMDOS may be reassembled at any 4K
location desired, e. g.. $FOGO-$FFFF {(suppressing the SYSRAM echo, and
putting indirect jumps to SYSRAM at the top of SYMDOS, since there is
lots of room there), and the FDC registers relocated to, say, page $A8,
or %AC.

FDC—-1 MANUAL {(Revision @) Page D - 1

HEX

ADDRESS

FEFE

Faco
£100
g QOO

AOOO

2000

ocoa

FbC—-1 MANUAL

FPC-1

MEMORY MAP
(As stzrped)

Srm-00s
EPROM- 2732

READ WRITE
/N/m..// (rEreaTED FIFF
,;‘; ; XS rmis)
ONTROL PO<r “J //W £ F100
[7/7?/ / Forr
/ BEPEATED
G4
TIMES
DATA Foo3
SECTOR Foo2
TRAG k& FOG)
$TATUS Comnane | FOOO

(Revision @)

Page D -

APPENDIX E — FILE AND DIRECTORY STRUECTURES

Disk Format

Track #, sector 1: System parameters set by user (if
not user set, defaults are used)

Track @, sectors 2 to max valus,
Track 1, sectors 1 to max value: Directory Data

Track 2 to max value, all sectors: Data Files

Directory Format

There are 1& bytes per directory entry, withs

8 entries/sector if single density
16 entries/sector if double density

Each entry consists of:

1#4 bytes: Filenanme

2 bytes: Hex start address of file

2 bytes: Hex end address of file

1 byte 1 Track number where file starts
(Max = %7F; MSB = & if side 1,
1 if side 2)

1 byte : Sector number where file starts
{Ma»x wvalue depends on drive type,
£12 if D inch, $1Aa if B inch)

File Structure

All files are stored in sequential sectors on the disk. When the end of

a track is reached, the disk advances to sector 1 o©f the next higher
track number.

I+ read-verify is enabled and an error occurs during the readback, the
disk directory will reflect an entry titled “BAD?SEGMNT" occupying an

area from the beginning of the file up to and including the sector on
which the eroor occurred.

FDC—-1 MANUAL <(Revision &) Page E - i

FDC—1 MANUAL

APFENDIX F — CHIP FUNCTIONS

CHIP TYPE

i 2732

2 7438

3 741 5197
4 5Y1791-82
9 741 8368
& 74563
7 74504

8 7416

9 825129
18 741 574
11 74L 5163
12 8383

i3 74LS174
14 7438

{Revision #)

FUNCTION
E;EB;:;;rmware

Clock Switching

Data Sep Clock

Misc Gating

Master Clock Divider
Floppy Disk Controller
SYM Signal Buffering
Misc Bating

Master Oscillator
Misc Inverting

Open Collector Interface
Address Map Decoder ROM
Read Data Pulse Shaping
Data Separator

Data Bus Buffer

Control Port Latch

Disk Control Outputs

Page F

APPENDIX G — CONNECTOR PINOUTS

P1 - "E" CONNECTOR
1 NC A ABB
2 NC B AR1
3 1 C ABZ
4 IR@ D AB3
S RO E ABR4
& NC F ABS
7 RES H AB&
8 DB7 J AR7
7 DBé K ABS
16 DBS L AR
11 DB4 M AB1
12 DB3 N AR11
13 DB2 P AB12
14 DAL R AB13
1S Dp@ S AB14
16 NC T AB1S
17 NC TR)
18 NC vV R/W
19 NC W R/WE
26 NC X NC
21 NC v 2
22 GND Z RAM R/W

Pins 1-22 are on the component side, from right to left when
facing the edqge, opposite to SYM.

Pins A-Z are on the solder side.

Connector type: Dual 22 card edge on 6.15&" centers.

P2 — EXTENSION “E" CONNECTOR

The Extension Expansion Connector pinocut is identical with that of the
Expansion Connector except for pin 21, which is connected to the +5 V
supplied by turret pin T2, and the numbers read from left to right when
facing the edge, same as on SYM.

FDC—1 MANUAL (Revision @) Fage G - 1

APPENDIX

&6 — CONTINUED

DISK DRIVE CABLE WIRING LIST

P4 DuAt 235 (4.1")

8 INCH DRIVES

P3 DUAL 17 (@.1")
S 1/4 INCH DRIVES

2 No Connection
4 No Connection
5] No Connection
g8 No Connection
19 No Connection
12 No Connection
14 Side Select {Note 1)
16 No Connection
18 No Connection 2 No Connection
28 Index 4 No Connection
22 Ready & No Connection
24 No Connection (Note 2} 8 Index/Sector
26 Drive Select 1 19 Drive Select 1
28 Drive Select 2 12 Drive Select 2
It No Connection 14 No Connection
32 No Connection 16 Motor On
34 Direction 18 Direction
34 Step 2@ Step
58 Write PData 22 Write Data
A8 Write Gate 24 Write Gate
42 Track 99 26 Track &g
44 Write Protect 28 Write Protect
46 Read Data 3@ Read Data
48 No Connection 32 Side Select {(Note 1)
=g No Connection 34 No Connection
All odd numbered pins are at logic zero {(i. e., ground).
Note f: Not provided by single sided drives, but the FDC-1 defaults to
gide 1 if this signal is not available.
Note 2: Hard-sectored disk drives, e.g., the SAB@1, use this line {for
Sector. These drives may be used {(with soft sectored disks

FDC—1 MANUAL

only?) with the FDC-1.

(Revision &) Page & - 2

APPENDIX H — PHYSICAL. SPECIFICATIONS

Power Requirements:
Volts: +5.8Y DC +/—- @.1V
Amps: #.4A typical, #.05A max
Wattss 2.5W max
Weights
With edge connector: 5 ounces (14]1.75 grams) max

Temperature Ranges:

Cperating: @ to +7@ degrees Celsius
Storage: ~38 to +8¢¥ degrees Celsius

Physical Size - P.C. Bgard:
Width: A4.2" +/- @,04"
Length: S.7" +/— #.83" {6.2" with connector)
Height: @.5" max

Electrical Characteristics:

Host System Clock Speed: 1 MHz max

Disk Transfer Rates: 31258, 156250 bytes/second
Disk Gizes Supported: 8", 3 1/4"; 1 or 2 sided
Recording Densities/Encoding:

Single/FM

Double/MFM (5" only)

FDC—1 MANUAL (Revision &) Page H

APPENDIX I — CONTROL PORT DEFINITIONS

D4 D3 b2
AN A A

D1

D@

L0

A

&

FDE—-1 MANUAL

When low &nables "DS1°"

When low enahles "DS20
When low enables "Motor On"

The side select line to the
disk drive follows this line

When low enables the 1791 HLY
input, and also the 1791 IRQ
tc the SYM

When low enables the single
density mode. High enables
double density, and should be
done in 5 inch mode only

NMote 1: Control port is write only

Note 2: On reset,

{(Revision #)

all control port outputs are set high

FPage 1 -

